集合論ノート 0012

θ -cc poset と θ 以上の基数の保存,ccc poset と基数の保存

近藤友祐 (@elecello_)

初稿: 2018/09/26 修正: 2018/10/08

この文書の場所: https://elecello.com/works.html

本稿では、特に断りの無い場合、M は ZFC の ctm, \mathbb{P} は poset とし、 $\mathbb{P} \in M$ を仮定する.

定義 1. $Card(\theta)^M$ なる θ に関して,

(1) ℙが θ 以上の基数を保つ

$$:\iff \forall G\colon (M,\mathbb{P})\text{-generic}\,\forall \beta < \mathrm{o}(M)\,\left[\beta \geqslant \theta \to \left(\mathrm{Card}(\beta)^M \leftrightarrow \mathrm{Card}(\beta)^{M[G]}\right)\right]. \tag{1}$$

(2) ℙが θ 以上の共終数を保つ

$$:\iff \forall G\colon (M,\mathbb{P})\text{-generic}\ \forall\ \mathrm{limit}\ \gamma<\mathrm{o}(M)\ \left[\mathrm{cf}^M(\gamma)\geqslant\theta\rightarrow\left(\mathrm{cf}^M(\gamma)=\mathrm{cf}^{M[G]}(\gamma)\right)\right]. \tag{2}$$

また、 $\theta = \aleph_1$ のときは「 θ 以上の」を省略する.

注意 2. 式 (1) の "←" は常に成り立つ。なぜならば, $\operatorname{Card}(\cdot)$ は Π_1 論理式であるから,下向き (M[G] から M) に相対化するため。また,式 (2) の " \geqslant " は常に成り立つ。なぜならば, \subseteq , \sup , $\operatorname{type}(M)$ に対する絶対性より, $\operatorname{cf}^M(\gamma) = \min\{\operatorname{type}(X): X \subseteq \gamma \land \sup X = \gamma \land X \in M\}$, $\operatorname{cf}^{M[G]}(\gamma) = \min\{\operatorname{type}(X): X \subseteq \gamma \land \sup X = \gamma \land X \in M\}$, $\operatorname{cf}^{M[G]}(\gamma) = \min\{\operatorname{type}(X): X \subseteq \gamma \land \sup X = \gamma \land X \in M[G]\}$ であるが,M から M[G] へと X の捜索範囲が広がった分,最小値としては落ちるため。

補題 3. $\operatorname{Card}(\theta)^M$ を仮定する. このとき,

 \mathbb{P} が θ 以上の共終数を保つ

$$\iff \forall G \colon (M, \mathbb{P})\text{-generic } \forall \operatorname{limit} \beta \ \left[\theta \leqslant \beta < \operatorname{o}(M) \to \left(\operatorname{Reg}(\beta)^M \to \operatorname{Reg}(\beta)^{M[G]}\right)\right]. \tag{3}$$

Proof. (\Longrightarrow) 右辺を示すために、 (M,\mathbb{P}) -generic filter G, β : $\lim \, \sigma \, \theta \leqslant \beta < \mathrm{o}(M)$ なるものを取り、 $\mathrm{Reg}(\beta)^M$ を仮定せよ。 $\mathrm{Reg}(\beta)^M$ より $\mathrm{cf}^M(\beta) = \beta$ である。今, $\beta < \mathrm{o}(M)$: \lim , $\mathrm{cf}^M(\beta) = \beta \geqslant \theta$ であり、 \mathbb{P} は θ 以上の共終数を保つので、 $\mathrm{cf}^M(\beta) = \mathrm{cf}^{M[G]}(\beta)$ を得る。したがって $\mathrm{cf}^{M[G]}(\beta) = \beta$, つまり $\mathrm{Reg}(\beta)^{M[G]}$ である。

[(秦)] 左辺を示すために、 (M,\mathbb{P}) -generic filter G, $\gamma < \mathrm{o}(M)$: \lim で、 $\mathrm{cf}^M(\gamma) \geqslant \theta$ なるものを固定せよ. $\beta := \mathrm{cf}^M(\gamma)$ とする (want: $\beta = \mathrm{cf}^{M[G]}(\gamma)$). 共終数を取ると値が落ちるので $\beta \leqslant \gamma < \mathrm{o}(M)$ である. $\beta < \theta$ であれば、 $\mathrm{cf}^M(\gamma) = \beta < \theta \leqslant \mathrm{cf}^M(\gamma)$ となり矛盾するので、これは起こり得ない、そこで $\beta \geqslant \theta$ の場合を考える. 極限順序数の共終数は正則なので、 $\mathrm{Reg}(\beta)^M$ である。 $\theta \leqslant \beta < \mathrm{o}(M)$ と合

わせて、仮定から $\operatorname{Reg}(\beta)^{M[G]}$ を得る。すなわち、 $\operatorname{cf}^{M[G]}(\beta) = \beta$ である。さて、 $\beta = \operatorname{cf}^M(\gamma)$ であるから $M \models \exists X \, (X \subseteq \gamma \land \sup X = \gamma \land \operatorname{type}(X) = \beta)$ が成り立っている。このような $X \in M$ を固定する。 \subseteq , \sup , $\operatorname{type} \mathcal{O} M$ に対する絶対性より、 $X \subseteq \gamma \land \sup X = \gamma \land \operatorname{type}(X) = \beta$ が成り立つ。ZFC で $Y \subseteq \delta : \lim \land \sup Y = \delta \Longrightarrow \operatorname{cf}(\delta) = \operatorname{cf}(\operatorname{type} Y)$ 」が成り立つ。そこで Y, δ として $X, \gamma \in M[G]$ を取れば、 $M[G] \models \operatorname{ZFC}$ や $\operatorname{type} \mathcal{O}$ 絶対性などに注意して $\operatorname{cf}^{M[G]}(\gamma) = \operatorname{cf}^{M[G]}(\operatorname{type} X) = \operatorname{cf}^{M[G]}(\beta) = \beta$ となるのでよい。

補題 4. $\operatorname{Reg}(\theta)^M$ とする. このとき、 $\mathbb P$ が θ 以上の共終数を保つならば、 $\mathbb P$ は θ 以上の基数を保つ.

 $Proof.\ G:\ (M,\mathbb{P})$ -generic, および $\kappa<\mathrm{o}(M)$ で $\kappa\geqslant\theta$ なるものを取り固定する。 $\mathrm{Card}(\kappa)^M\leftrightarrow\mathrm{Card}(\kappa)^{M[G]}$ を言えばよいが、注意 2 により "←" はよいので、"→"を示す。 κ は、M で (1): $\mathrm{Reg}(\kappa)$ であるか、(2): κ は極限基数であるかのいずれかである。ただし、(1) と (2) が同時に満たされることもありうる。(1) と (2) で場合分け。(1): $\mathrm{Reg}(\kappa)^M$ のとき。 $\kappa<\mathrm{o}(M)$: lim , $\mathrm{cf}^M(\kappa)=\kappa\geqslant\theta$ であり、 \mathbb{P} が θ 以上の共終数を保っことから、 $\mathrm{Reg}(\kappa)^M\Longleftrightarrow\mathrm{cf}^M(\kappa)=\kappa\Longleftrightarrow\mathrm{cf}^{M[G]}(\kappa)=\kappa\Longleftrightarrow\mathrm{Reg}(\kappa)^{M[G]}$ であることに留意せよ。 ZFC で $[\mathrm{Reg}(\kappa)\to\mathrm{Card}(\kappa)]$ が成り立つので、そのモデルである M[G] でも成り立つ。よって $\mathrm{Reg}(\kappa)^{M[G]}$ から $\mathrm{Card}(\kappa)^{M[G]}$ を得る。(2): $(\kappa\geqslant\theta)$ が極限基数) M のとき。 $\kappa=\theta$ であれば、 $\mathrm{Reg}(\theta)^M$ との仮定および (1) の結果より $\mathrm{Card}(\theta)^{M[G]}$ を得るのでよい、そこで $\kappa>\theta$ のときを考える。 ZFC で $[\kappa>\theta)$ が極限基数な らば $\kappa=\mathrm{sup}\{\alpha<\kappa:\mathrm{cf}(\alpha)\geqslant\theta\wedge\mathrm{Reg}(\alpha)\}$ 」が成り立つ* 1 ので、 $(\kappa$ が極限基数) $^M\Longrightarrow M\models\kappa=\bigcup\{\alpha<\kappa:\mathrm{cf}(\alpha)\geqslant\theta\wedge\mathrm{Reg}(\alpha)\}\Longrightarrow M[G]\models\kappa=\bigcup\{\alpha<\kappa:\mathrm{cf}(\alpha)\geqslant\theta\wedge\mathrm{Reg}(\alpha)\}\Longrightarrow Card(\kappa)^{M[G]}$ 。2 つ目の含意は、共終数の保存の仮定、および、先ほど指摘したように、この状況下で正則性が保たれる、つまり $\mathrm{Reg}(\alpha)^M$ \Longleftrightarrow $\mathrm{Reg}(\alpha)^{M[G]}$ であることによる。最後の含意は、 $\mathrm{Reg}(\alpha)$ より $\mathrm{Card}(\alpha)$ であり、基数の集合の Sup は再び基数になることによる。

補題 5 (θ -Global Covering Property?).

$$\begin{cases}
\mathbb{P} \in M \\
G: (M, \mathbb{P})\text{-generic} \\
(\theta は 非可算基数)^{M} \\
(\mathbb{P} は \theta\text{-cc をもつ})^{M} \implies \exists F: A \to \mathcal{P}(B) \text{ s.t.} \\
\begin{cases}
F \in M \\
\forall a \in A (f(a) \in F(a)) \\
\forall a \in A (|F(a)| < \theta)^{M}.
\end{cases}
\end{cases}$$
(4)

補題のお気持ちは図1の通り.

 $Proof.\ f\in M[G]$ より, $\mathring{f}\in M^{\mathbb{P}}$ で $\mathring{f}_G=f$ なるものがとれる. $M[G]\models \mathring{f}_G\colon \check{A}_G\to \check{B}_G$ " なので,真理補題より,ある $p\in G$ が存在して $p\Vdash \mathring{f}\colon \check{A}\to \check{B}$ ".この p を固定する.各 $a\in A$ に対して $F(a):=\left\{b\in B:\exists q\leqslant p\left(q\Vdash \mathring{f}(\check{a})=\check{b}\right)\right\}$ $(\in\mathcal{P}(B))$ と定めよ (お気持ち: $\lceil M$ から見た,f(a) として可能な値 b」を,とりあえず全部集めてくる).定義可能性補題より $F\in M$ である.この F が所望のものであることを見る.

^{*1} κ は極限基数なので、ある η : lim を用いて $\kappa = \bigcup_{\xi < \eta} \aleph_{\xi}$ と書ける.この η を固定せよ. $\beta \in \sup\{\alpha < \kappa : \operatorname{cf}(\alpha) \geqslant \theta \land \operatorname{Reg}(\alpha)\}$ ならば、 $\exists \alpha < \kappa \, (\beta \in \alpha \land \operatorname{cf}(\alpha) = \alpha \geqslant \theta \land \operatorname{Reg}(\alpha))$. $\operatorname{Reg}(\alpha)$ なので $\operatorname{Card}(\alpha)$ である.このことと $\alpha < \kappa$ より、ある $\xi < \eta$ が存在して $\alpha = \aleph_{\xi}$ と書ける.よって $\beta \in \kappa$ である.逆に $\beta \in \kappa$ とする. $\exists \xi < \eta \, (\beta \in \aleph_{\xi})$ である. $\theta < \kappa$ に留意すれば、 $\max\{\theta,\aleph_{\xi}\}$ を \aleph_{ζ} ($\zeta < \eta$) の形に書ける. κ は極限基数なので $\beta \in \aleph_{\zeta+1} < \kappa$ ($\zeta + 1 < \eta$) となる. $\alpha = \aleph_{\zeta+1}$ を証拠に $\exists \alpha < \kappa \, (\beta \in \alpha \land \operatorname{Reg}(\alpha) \land \operatorname{cf}(\alpha) = \alpha \geqslant \theta)$ となるので、 $\beta \in \sup\{\alpha < \kappa : \operatorname{cf}(\alpha) \geqslant \theta \land \operatorname{Reg}(\alpha)\}$ を得る.

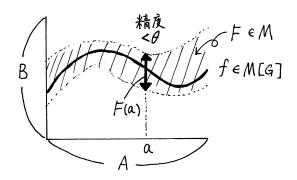


図 1 M は、M[G] の函数を精度 $< \theta$ で近似できる

 $ig| orall a \in A(f(a) \in F(a)) ig| a \in A$ を勝手に取り固定せよ、b := f(a) とせよ (want: $b \in F(a)$)、 $M[G] \models$ " $\check{b}_G = \mathring{f}_G(\check{a}_G)$ " である、真理補題により、 $r \Vdash$ " $\check{b} = \mathring{f}(\check{a})$ " なる $r \in G$ が存在する、G の filter 性より $q \leqslant p, r$ なる $q \in G$ が存在するが、この $q \leqslant p$ について、拡大補題より $q \Vdash$ " $\check{b} = \mathring{f}(\check{a})$ " である、 $q \leqslant p$ と合わせて、F(a) の定義から $b \in F(a)$ を得る.

 $\forall a \in A (|F(a)| < \theta)^M$ $a \in A$ を固定せよ、各 $b \in F(a)$ ごとに存在が保証される $q \leqslant p$ のうちのひとつを選び、 q_b とせよ $(M \cap AC)$ を使っている。お気持ち: $\lceil q_b \mid d$ 、 $f(a) = b \cap AC$ の証人」)。函数 $g_a \colon F(a) \to \mathbb{P}$ 、 $g_a(b) := q_b \mid d$ 、定義可能性補題より、 $M \cap AC$ の元であることに注意せよ。

Claim 1. $\forall b, c \in F(a) (b \neq c \rightarrow q_b \perp q_c)$.

[:] 背理法. $q_b
muldapprox q_c$ なる $b,c \in F(a)$, $b \neq c$ が存在したとする. このとき $\exists r \leqslant q_b,q_c$ ($r \leqslant q_b,q_c$) であるから,このr について,F(a) の定義と拡大補題から $r \Vdash$ " $\mathring{f}(\check{a}) = \check{b}$ " & $r \Vdash$ " $\mathring{f}(\check{a}) = \check{c}$ " である。よって, $r \Vdash$ " $\mathring{f}(\check{a}) = \check{b} \land \mathring{f}(\check{a}) = \check{c}$ ",したがって $r \Vdash$ " $\check{b} = \check{c}$ ".Rasiowa-Sikorski の補題より,r を元として含む (M,\mathbb{P}) -generic filter H が存在する。 真理補題より $M[H] \models$ " $\check{b}_G = \check{c}_G$ ",したがってb = c となるが,これはb,c の取り方に矛盾する.

以上の考察より、 $M \models \text{``}\{g_a(b) \ (=q_b) \in \mathbb{P} : b \in F(a)\}\$ は \mathbb{P} の反鎖"が従う、 $M \models \text{``P}$ は θ -cc をもつ"と合わせて、 $M \models \text{``|}\{g_a(b) \in \mathbb{P} : b \in F(a)\}\ | < \theta$ "である。したがって*2、 $(|F(a)| < \theta)^M$ である。

補題 **6.** $(\theta$ は非可算正則基数 $\wedge \mathbb{P}$ は θ -cc をもつ $)^M$ ならば、 \mathbb{P} は θ 以上の共終数と θ 以上の基数を保つ.

Proof. 補題 4 によれば、 \mathbb{P} が θ 以上の共終数を保つことを示せば十分である。さらに、そのためには式(3)の右辺を示せば十分である。 $G\colon (M,\mathbb{P})$ -generic、 $\beta:\lim$ で $\theta\leqslant\beta<\mathrm{o}(M)$ なるものを固定する。対偶 $\neg\mathrm{Reg}(\beta)^{M[G]}\to\neg\mathrm{Reg}(\beta)^M$ を示す。 $\neg\mathrm{Reg}(\beta)^{M[G]}$ を仮定する (want: $\neg\mathrm{Reg}(\beta)^M$)。 $\alpha:=\mathrm{cf}^{M[G]}(\beta)<\beta$ と定める。共終数の定義より $M[G]\models\exists X\,(X\subseteq\beta\land\sup X=\beta\land\operatorname{type}(X)=\alpha)$ である。このような $X\in M[G]$ を固定せよ。 $\mathrm{type}(X)=\alpha$ の証拠となる唯一の順序同型 $f\colon \langle\alpha,\in\rangle\cong\langle X,\in\rangle$ をとる。 type の 絶対性より $f\in M[G]$ である。 $X\subseteq\beta$ なので $f\colon\alpha\to\beta$ でもある。補題 5 により、 $F\colon\alpha\to\mathcal{P}(\beta)$ で $F\in M$ 、 $\forall\xi<\alpha[(f(\xi)\in F(\xi))\land(|F(\xi)|<\theta)^M]$ なるものを得る。 $Y:=\bigcup_{\xi<\alpha}F(\xi)$ ($\subseteq\beta$) と定める。 $Y\in M$ である。 $Y\in M$ であるから、 $Y\in M$ である。 $Y\in M$ でかる。 $Y\in M$ でから、 $Y\in M$ である。 $Y\in M$ である。 $Y\in M$ である。 $Y\in M$ でかる。 $Y\in M$ である。 $Y\in M$ でから、 $Y\in M$ でから

^{*2} $M \models$ " g_a は単射"を言う必要がある。M で議論する。 $b \neq c$ かつ $g_a(b) = g_a(c)$ から矛盾させる。 $g_a(b) = g_a(c)$ とは $q_b = q_c$ のことなので, $q_b \not\perp q_c$. これは $\{q_b \in \mathbb{P}: b \in F(a)\}$ が反鎖であることに矛盾。

ある. よって $\sup X \leq \sup Y$ である. $Y \subseteq \beta$ で $\sup X = \beta$ だったので, $\sup Y = \beta$ である. 今,仮定より $(\beta$ は非可算正則基数) M である. このことと (Y は濃度 $<\beta$ の集合の $<\beta$ 個の和) M を合わせて, $(|Y|<\beta)^M$ を得る. $(Y\subseteq\beta\wedge\sup Y=\beta\wedge\operatorname{type}(Y)<\beta)^M$ なので,この $Y\in M$ は $(\operatorname{cf}(\beta)<\beta)^M$ の証人 になっている. したがって $\neg\operatorname{Reg}(\beta)^M$ となり,証明が完了した.

補題 7. 基数 $\lambda \geqslant \aleph_0$ に対し、 $\mathbb{P} := \operatorname{Fn}_{\lambda}(I,J)$ は $(|J|^{<\lambda})^+$ -cc をもつ.

Proof. $\theta:=(|J|^{<\lambda})^+$ とせよ. |J|=0,1 のとき,明らか*3. そこで $|J|\geqslant 2$ を仮定する。 θ は無限基数の後続基数なので正則である。また $\theta>\lambda$ である*4. $\mathbb P$ が濃度 θ 以上の反鎖を持たないことを示す.そのためには, $\mathbb P$ が濃度 θ の反鎖を持たないことを示せば十分である*5. $\mathbb P$ から勝手に取った部分集合 $\mathcal C:=\{p_\alpha:\alpha<\theta\}$ が反鎖に成り得ないことを示す.この並べ上げに重複はないものとする.場合分け.

 λ が正則基数のとき 各 $\alpha < \theta$ に対し, $s_{\alpha} := \text{dom}(p_{\alpha}) \in [I]^{<\lambda}$ と定めよ.この α を s_{α} の背番号と呼ぶことにする. $A := \{s_{\alpha} : \alpha < \theta\}$ と定める.

Claim 1. $|\mathcal{A}| = \theta$.

[:] $\nu:=|A|<\theta$ から矛盾を導く、 $|A|=\nu$ より、重複を許さず $A=\{t_{\beta}:\beta<\nu\}$ と並べられる。すると、各 p_{α} $(\alpha<\theta)$ に対し、ある $\beta<\nu$ が存在して $p_{\alpha}\in {}^{(t_{\beta})}J$ となる。ゆえに $C\subseteq\bigcup_{\beta<\nu}{}^{(t_{\beta})}J$ となる。右辺の濃度を計算する。まず、各 β に対して $|t_{\beta}|<\lambda$ なので、補題の仮定より $|{}^{(t_{\beta})}J|\leqslant |J|^{<\lambda}<\theta$ である。よって右辺は濃度 $<\theta$ の集合の $<\theta$ 個の和なので、 θ の正則性と合わせて $|(\pi U)|<\theta$ を得る。一方で、左辺 C の濃度は θ なので、これは矛盾。 \Box (Claim 1)

Claim 2. $(|J|^{<\lambda})^{<\lambda} = |J|^{<\lambda}$. (もっと単純な証明があれば教えてください >_<)

[:] λ が (1): \aleph_0 であるか, (2): 後続基数 $\aleph_{\alpha+1}$ であるか, (3): 極限基数 \aleph_η $(\eta:\lim)$ であるかで場合分け、 (1): $\lambda=\aleph_0$ のとき、 $2\leqslant |J|<\aleph_0$ なら、 $(|J|^{<\aleph_0})^{<\aleph_0}=(\sup_{n<\aleph_0}|J|^n)^{<\aleph_0}=\aleph_0^{<\aleph_0}=\aleph_0=|J|^{<\aleph_0}$ となるのでよい、 $|J|\geqslant\aleph_0$ なら、 $(|J|^{<\aleph_0})^{<\aleph_0}=(\sup_{n<\aleph_0}|J|^n)^{<\aleph_0}=(\sup_{n<\aleph_0}|J|^n)^{<\aleph_0}=|J|^{\aleph_0}$ となるのでよい、 (2): $\lambda=\aleph_{\alpha+1}$ なら、 $(|J|^{<\aleph_0})^{<\aleph_0}=(\lim_{n<\aleph_0}|J|^{\aleph_0})^{\aleph_0}=|J|^{\aleph_\alpha\cdot\aleph_\alpha}=|J|^{\aleph_\alpha\cdot\aleph_\alpha}=|J|^{\aleph_\alpha}=|J|^{\aleph_\alpha\cdot\aleph_\alpha}=|J|^{\aleph_\alpha}=|J|^{\aleph_\alpha}$ なる、非減少 λ -列 $S=\langle |J|^{\xi}:\xi<\lambda\rangle$ in $|J|^{<\lambda}$ について、 $\lim_{\xi\to\lambda}|J|^\xi=|J|^{<\lambda}$ であるから、 $((\lambda)=cf(|J|^{<\lambda}))$ である ([2] Lemma 3.7 (ii))、 λ の正則性と合わせて $((J)^{<\lambda})=\lambda$ を得る、 $\nu:=|J|^{<\lambda}$ とおく、 $\forall\kappa<\lambda$ ($\nu^\kappa=\nu$) … (*) を示す、そのために $\kappa<\lambda$ を固定する、 $\nu^\kappa=\nu$ を示すには、(i) $\nu>\kappa$ 、(ii) $((\lambda)=\kappa$) に $((\lambda)=\kappa$) を示せばよい ([2] Theorem 5.20 (iii-a))、第一に、 $((\lambda)=\kappa$) 第三に、 $((\lambda)=\kappa$) を勝手に取る、先の列 $((\lambda)=\kappa$) を示せばよい (最後の $((\lambda)=\kappa$) を引きた。 $((\lambda)=\kappa$) が成り立つ、両辺 $((\lambda)=\kappa$) 乗すれば、 $((\lambda)=\kappa$) に なりよい (最後の $((\lambda)=\kappa$) が存在して $((\lambda)=\kappa$) が成り立つ、両辺 $((\lambda)=\kappa$) が $((\lambda)=\kappa$) が $((\lambda)=\kappa$) は いうになってしまう)、以上で (*) が 示せた、以上より $((\lambda)=\kappa$) を $((\lambda)=\kappa$) が $((\lambda)=\kappa$) を $((\lambda)=\kappa$) を

^{*3} |J|=0,1 のとき $(|J|^{<\lambda})^+=2$ である. |J|=0 のとき $J=\varnothing$ なので、 $\mathbb{P}=\varnothing$ または $\{\varnothing\}$. よって、 \mathbb{P} の反鎖としては \varnothing か $\{\varnothing\}$ しかあり得ないので、2-cc が満たされる. |J|=1 なら $\mathbb{P}=\{s\times\{*\}:s\in[I]^{<\lambda}\}$ であり、 \mathbb{P} の反鎖は \varnothing か $\{p\}$ $(p\in\mathbb{P})$ しかあり得ないので、再び 2-cc が満たされる.

^{*4} 何となれば: $\lambda < (|J|^{<\lambda})^+$,すなわち $|J|^{<\lambda} \geqslant \lambda$ を示せばよい. $|J|^{<\lambda} = \sup_{\kappa < \lambda} |J|^\kappa \geqslant \sup_{\kappa < \lambda} 2^\kappa \geqslant \sup_{\kappa < \lambda} \kappa^+ = \lambda$ なのでよい.

^{*5} 何となれば: 『サイズ κ (\geq θ) の反鎖が存在する \Longrightarrow サイズ θ の反鎖が存在する』は,反鎖の部分集合が再び反鎖になることから明らか、『』の対偶を取ればよい.

 \Box (Claim 2)

A に Δ -システム補題を適用して, $r \subseteq I$, $|r| < \lambda$ なる集合 r ならびに r を根とする Δ -システム β で, $\beta \subseteq A$, $|\beta| = \theta$ なるものを得る*6. β の元の背番号全体の集合を β (β) とせよ。 β は β を根とする β となるので, β 0 で, β 1 を根とする β 2 で, β 3 に β 4 に β 5 に β 6 に β 6 に β 7 に β 8 に β 8 に β 9 に

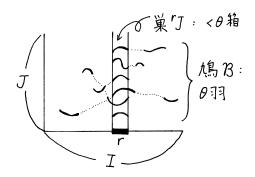


図 2 $<\theta$ 箱の巣 rJ と θ 羽の鳩たち \mathcal{B} . 点線は見易さのために描いたにすぎず、本来は空白であるべきことに注意.

 λ が特異基数のとき C を濃度で類別して $C = \bigsqcup_{\kappa < \lambda} C_{\kappa}$, $C_{\kappa} = \{p \in C : |p| = \kappa\}$ とせよ、もしも $\forall \kappa < \lambda (|C_{\kappa}| < \theta)$ ならば、C は濃度 $< \theta$ の集合の $< \theta$ 個の和なので、 θ の正則性より $|C| < \theta$ となり、矛盾、よってある $\kappa < \lambda$ が存在して $|C_{\kappa}| = \theta$ である。この κ について、 $C' := \{p \in C : |p| < \kappa^+\} (\supseteq C_{\kappa})$ は濃度 θ をもつ、 $C' \subseteq \operatorname{Fn}_{\kappa^+}(I,J)$ となっていることに留意せよ。正則基数については補題が証明してある。 κ^+ は正則なので、 $\operatorname{Fn}_{\kappa^+}(I,J)$ は $(|J|^{<\kappa^+})^+$ -cc をもつ。 $\kappa^+ \leqslant \lambda$ より $(|J|^{<\kappa^+})^+ \leqslant \theta$ なので、 $\operatorname{Fn}_{\kappa^+}(I,J)$ は θ -cc をもつ*7、C' は濃度 θ を持つため $\operatorname{Fn}_{\kappa^+}(I,J)$ で反鎖でない。よって、それより広い $\mathbb P$ でも反鎖でない。 $C \supseteq C'$ より、C は $\mathbb P$ で反鎖でない。

系 8. $I,J\in M$, $[\operatorname{Reg}(\lambda)\wedge |J|\leqslant 2^{<\lambda}\wedge \theta:=(2^{<\lambda})^+]^M$ ならば, $\operatorname{Fn}_\lambda(I,J)^M$ は θ -cc を持ち, したがって θ 以上の共終数と θ 以上の基数を保つ.

 $Proof. \ (|J| \leqslant 2^{<\lambda})^M$ と $\mathrm{Reg}(\lambda)^M$ より、補題 7の $\mathrm{Claim}\ 2$ と同様にして $(|J|^{<\lambda} \leqslant (2^{<\lambda})^{<\lambda} = 2^{<\lambda})^M$ を得る. よって $[(|J|^{<\lambda})^+ \leqslant (2^{<\lambda})^+]^M$ である。M における補題 7 から $[\mathrm{Fn}_\lambda(I,J)\ \mathrm{tt}\ (|J|^{<\lambda})^+$ -cc をもつ $]^M$. よってそれ以上の $(2^{<\lambda})^+$ でも言えるので、 $[\mathrm{Fn}_\lambda(I,J)\ \mathrm{tt}\ (2^{<\lambda})^+$ -cc をもつ $]^M$ が言える。つまり $[\mathrm{Fn}_\lambda(I,J)\ \mathrm{tt}\ \theta$ -cc をもつ $]^M$. $I,J\in M$ と $\mathrm{Reg}(\lambda)^M$ (したがって $\mathrm{Card}(\lambda)^M$) より、 $\mathrm{Fn}_\lambda(I,J)\in M$ である。さらに、(θ は無限基数の後続基数) M なので (θ は非可算正則基数) M である。補題 θ により $\mathrm{Fn}_\lambda(I,J)\ \mathrm{tt}\ \theta$ 以上の共終数と θ 以上の基数を保つことがわかる。

 \mathbf{A} 9. $I,J \in M$, (J は可算) M ならば、 $\mathrm{Fn}(I,J)$ は ccc を持ち、したがって共終数と基数を保つ。

^{*6} Δ -システム補題が使える条件『(1): λ が無限基数,(2): θ (> λ) は正則基数,(3): $\forall \zeta < \theta$ ($|\zeta^{<\lambda}| < \theta$),(4): $|A| \geqslant \theta$,(5): $\forall x \in \mathcal{A}(|x| < \lambda)$ 』を確認しなければならない.(1),(2),(4),(5) は明らか.(3): Claim 2を用いることで, $\zeta < \theta \Longrightarrow \zeta < (|J|^{<\lambda})^+ \Longrightarrow \zeta \leqslant |J|^{<\lambda} \Longrightarrow |\zeta^{<\lambda}| \sim {}^{<\lambda}\zeta \sim |\zeta|^{<\lambda} \leqslant (|J|^{<\lambda})^{<\lambda} = |J|^{<\lambda} < \theta$ となるのでよい.

^{*7} 定義より直ちに, 『 $\mu \leq \nu$ について, $\mathbb P$ が μ -cc を持つならば $\mathbb P$ は ν -cc を持つ』ことがいえる.

Proof. 系 8 の $\lambda = \omega$ の場合に当たる。M の中で: $\operatorname{Reg}(\omega),\ |J| \leqslant \aleph_0 = 2^{<\omega},\ \theta = (2^{<\omega})^+ = \aleph_0^+ = \aleph_1$ となっているのでよい。

参考文献

本稿では、主に[5]、Ch.IV、§7を参考にしました.対応する定理番号の明記は行っていません.

- [1] Devlin, K., The Joy of Sets: Fundamentals of Contemporary Set Theory (2nd ed.), Undergraduate Texts in Mathematics, Springer, 1993.
- [2] Jech, T., Set Theory: The Third Millennium Edition, revised and expanded, Springer Monographs in Mathematics, Springer, 2002.
- [3] Kunen, K., Set Theory, An Introduction to Independence Proofs, Vol. 102. Studies in Logic and the Foundations of Mathematics, North-Holland, 1980. 邦訳 [13].
- [4] Kunen, K., The Foundations of Mathematics, Vol. 19. Studies in Logic: Mathematical Logic and Foundations, College Publications, 2009. 邦訳 [14].
- [5] Kunen, K., Set Theory (rev. ed.), Vol. 34. Studies in Logic: Mathematical Logic and Foundations, College Publications, 2011.
- [6] Schindler, R., Set Theory, Exploring Independence and Truth, Universitext, Springer, 2014.
- [7] Shoenfield. J.R., Mathematical Logic, Addison-Wesley, 1967.
- [8] Takeuti, G. and Zaring, W.M., *Introduction to Axiomatic Set Theory* (2nd ed.), Vol. 1. Graduate Texts in Mathematics, Springer, 1982.
- [9] Weaver, N., Forcing for Mathematicians, World Scientific Publishing, 2014.
- [10] 新井敏康, 数学基礎論, 岩波書店, 2011.
- [11] 菊池誠, 不完全性定理, 共立出版, 2014.
- [12] 倉田令二朗・篠田寿一、公理論的集合論、倉田令二郎監修・数学基礎論シリーズ2巻、河合文化教育研究所、1996.
- [13] K. キューネン (藤田博司訳), 集合論-独立性証明への案内, 日本評論社, 2008. [3] の邦訳.
- [14] K. キューネン (藤田博司訳), キューネン数学基礎論講義, 日本評論社, 2016. [4] の邦訳.
- [15] 田中一之編·著, 数学基礎論講義, 日本評論社, 1997.
- 16] 田中一之編, ゲーデルと 20 世紀の論理学 4 集合論とプラトニズム, 東京大学出版会, 2007.
- [17] 田中一之・鈴木登志雄, 数学のロジックと集合論, 培風館, 2003.
- [18] 田中尚夫, 公理的集合論, 現代数学レクチャーズ (B-10), 培風館, 1982.
- [19] 田中尚夫, 選択公理と数学-発生と論争、そして確立への道 (増訂版), 遊星社, 2005.